
Package: motif (via r-universe)
August 23, 2024

Title Local Pattern Analysis

Version 0.6.4

Description Describes spatial patterns of categorical raster data for
any defined regular and irregular areas. Patterns are described
quantitatively using built-in signatures based on co-occurrence
matrices but also allows for any user-defined functions. It
enables spatial analysis such as search, change detection, and
clustering to be performed on spatial patterns (Nowosad (2021)
<doi:10.1007/s10980-020-01135-0>).

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Depends R (>= 3.1)

LinkingTo comat (>= 0.7.0), Rcpp, RcppArmadillo

Imports comat, philentropy (>= 0.6.0), Rcpp, sf, stars, tibble

Suggests covr, dplyr, spdep, knitr, rmarkdown, testthat (>= 2.1.0),
terra

URL https://jakubnowosad.com/motif/

BugReports https://github.com/Nowosad/motif/issues

VignetteBuilder knitr

Repository https://nowosad.r-universe.dev

RemoteUrl https://github.com/nowosad/motif

RemoteRef HEAD

RemoteSha 1d4ee0baecbbb44c68140ce82084f32c3ecc2cab

1

https://doi.org/10.1007/s10980-020-01135-0
https://jakubnowosad.com/motif/
https://github.com/Nowosad/motif/issues

2 determine_classes

Contents

determine_classes . 2
lsp_add_clusters . 3
lsp_add_examples . 4
lsp_add_quality . 5
lsp_add_sf . 7
lsp_add_stars . 8
lsp_add_terra . 9
lsp_compare . 10
lsp_extract . 13
lsp_mosaic . 14
lsp_restructure . 15
lsp_search . 16
lsp_signature . 19
lsp_to_dist . 21
lsp_transform . 22
prepare_window . 23

Index 25

determine_classes Determine unique classes (internal function)

Description

Determine unique classes (internal function)

Usage

determine_classes(x, window)

Arguments

x • a stars or stars_proxy object

window • a windows argument from lsp_signature(), lsp_search(), or lsp_compare()

Value

A list with vector of numbers (unique classes)

lsp_add_clusters 3

lsp_add_clusters Adds clusters’ ids to a lsp object

Description

Adds clusters’ ids to a lsp object. The output can be of stars, sf, or terra class. See examples.

Usage

lsp_add_clusters(x, clust, output = "sf", window = NULL)

Arguments

x Object of class lsp - usually the output of the lsp_signature() function

clust Vector containing an id value for each row in x

output The class of the output. Either stars, sf, or terra

window Specifies areas for analysis. It can be either: NULL or an sf object. If window=NULL
calculations are performed based on the metadata from x. If an sf object is pro-
vided, each feature (row) defines the extent of a local pattern. The sf object
should have one attribute (otherwise, the first attribute is used as an id).

Value

Object of class stars, sf, or terra (depending on the output argument) with an additional column
"clust" representing clusters’ id values.

Examples

library(stars)
library(sf)
landform = read_stars(system.file("raster/landforms.tif", package = "motif"))
landform_cove = lsp_signature(landform,

type = "cove",
window = 200,
normalization = "pdf")

landform_dist = lsp_to_dist(landform_cove,
dist_fun = "jensen-shannon")

landform_hclust = hclust(landform_dist, method = "ward.D2")
#plot(landform_hclust)

clusters = cutree(landform_hclust, k = 4)

landform_grid_sf = lsp_add_clusters(landform_cove, clusters)
#plot(landform_grid_sf["clust"])

#landform_grid_sfq = lsp_add_quality(landform_grid_sf,

4 lsp_add_examples

landform_dist)
#plot(landform_grid_sfq["quality"])

larger data example
library(stars)
library(sf)
landform = read_stars(system.file("raster/landform.tif", package = "motif"),
proxy = FALSE)
landform_cove = lsp_signature(landform,
type = "cove",
window = 200,
normalization = "pdf")
#
landform_dist = lsp_to_dist(landform_cove,
dist_fun = "jensen-shannon")
#
landform_hclust = hclust(landform_dist, method = "ward.D2")
plot(landform_hclust)
#
clusters = cutree(landform_hclust, k = 6)
#
landform_grid_sf = lsp_add_clusters(landform_cove, clusters)
plot(landform_grid_sf["clust"])
#
landform_grid_sfq = lsp_add_quality(landform_grid_sf,
landform_dist)
plot(landform_grid_sfq["quality"])

lsp_add_examples Adds spatial data of each region in an lsp or sf object

Description

Adds spatial data of each region in an lsp or sf object. The output is an lsp or sf object with an
additional column "region". See examples.

Usage

lsp_add_examples(x, y, window = NULL)

S3 method for class 'lsp'
lsp_add_examples(x, y, window = NULL)

S3 method for class 'sf'
lsp_add_examples(x, y, window = NULL)

Arguments

x Object of class lsp - usually a subset of the output of lsp_signature() or an
object of class sf - usually a subset of the output of lsp_search()

lsp_add_quality 5

y Object of class stars, stars_proxy, or terra’s SpatRaster.
window Specifies areas for analysis. It can be either: NULL or an sf object. The sf object

is only needed for adding examples of irregular regions.

Value

The input object with a new column "region". The "region" column is a list with a raster extracted
for each row.

Examples

library(stars)

landcover = read_stars(system.file("raster/landcover2015s.tif", package = "motif"))

landcover_coma = lsp_signature(landcover, type = "coma", threshold = 0.9, window = 100)
selected_coma = subset(landcover_coma, id %in% c(5, 10, 15, 35))
selected_coma

selected_coma = lsp_add_examples(x = selected_coma, y = landcover)
selected_coma

plot(selected_coma$region[[1]])
plot(selected_coma$region[[4]])

larger data example
library(stars)

landcover = read_stars(system.file("raster/landcover2015.tif", package = "motif"))

landcover_coma = lsp_signature(landcover, type = "coma", threshold = 0.9, window = 100)
selected_coma = subset(landcover_coma, id %in% c(5, 80, 1971, 2048))
selected_coma

selected_coma = lsp_add_examples(x = selected_coma, y = landcover)
selected_coma

plot(selected_coma$region[[1]])
plot(selected_coma$region[[4]])

lsp_add_quality Calculates quality metrics of clustering or segmentation

Description

Calculates three metrics to evaluate quality of spatial patterns’ clustering or segmentation. When
the type is "cluster", then metrics of inhomogeneity, distinction, and quality are calculated. When
the type is "segmentation", then metrics of inhomogeneity, isolation, and quality are calculated.
For more information, see Details below.

6 lsp_add_quality

Usage

lsp_add_quality(x, x_dist, type = "cluster", regions = FALSE)

Arguments

x Object of class sf - usually the output of the lsp_add_clusters() function

x_dist Object of class dist - usually the output of the lsp_to_dist() function

type Either "cluster" or "segmentation"

regions Not implemented yet

Details

For type "cluster", this function calculates three quality metrics to evaluate spatial patterns’ clus-
tering: (1) inhomogeneity - it measures a degree of mutual dissimilarity between all objects in a
cluster. This value is between 0 and 1, where small value indicates that all objects in the cluster
represent consistent patterns so the cluster is pattern-homogeneous. (2) distinction - it is an average
distance between the focus cluster and all of the other clusters. This value is between 0 and 1, where
large value indicates that the cluster stands out from the other clusters. (3) quality - overall quality
of a cluster. It is calculated as 1 - (inhomogeneity / distinction). This value is also between 0 and 1,
where increased values indicate increased quality.

For type "segmentation", this function calculates three quality metrics to evaluate spatial patterns’
segmentation: (1) inhomogeneity - it measures a degree of mutual dissimilarity between all objects
in a cluster. This value is between 0 and 1, where small value indicates that all objects in the cluster
represent consistent patterns so the cluster is pattern-homogeneous. (2) isolation - it is an average
distance between the focus cluster and all of its neighbors. This value is between 0 and 1, where
large value indicates that the cluster stands out from its surroundings. (3) quality - overall quality
of a cluster. It is calculated as 1 - (inhomogeneity / distinction). This value is also between 0 and 1,
where increased values indicate increased quality.

Value

Object of class sf with three additional columns representing quality metrics.

References

Jakub Nowosad & Tomasz F. Stepinski (2021) Pattern-based identification and mapping of land-
scape types using multi-thematic data, International Journal of Geographical Information Science,
DOI: 10.1080/13658816.2021.1893324

See Also

lsp_add_clusters

Examples

see examples of `lsp_add_clusters()`

lsp_add_sf 7

lsp_add_sf Creates or adds a sf object

Description

Creates or adds a sf object based on the input object or a set of parameters. It accepts either an
object of class stars or lsp. In the first case, the output is created based on a set of parameters
(window_size and window_shift or window). In the second case, the output converts the lsp
object into a sf object.

Usage

lsp_add_sf(x = NULL, window = NULL, metadata = TRUE)

Default S3 method:
lsp_add_sf(x = NULL, window = NULL, metadata = TRUE)

S3 method for class 'lsp'
lsp_add_sf(x = NULL, window = NULL, metadata = TRUE)

Arguments

x Object of class stars or lsp. For stars, window or window_size can be used.

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object. If window=NULL calculations are performed for a whole area. If the
window argument is numeric, it is a length of the side of a square-shaped block of
cells. Expressed in the numbers of cells, it defines the extent of a local pattern. If
an sf object is provided, each feature (row) defines the extent of a local pattern.
The sf object should have one attribute (otherwise, the first attribute is used as
an id).

metadata Logical. Only when x`` is of class lsp. If TRUE, the output object will have metadata ("id" and "na_prop"). If FALSE‘,
the output object will not have metadata ("id" and "na_prop").

Value

An sf object converted from the input object or a provided set of parameters

Examples

library(stars)
landform = read_stars(system.file("raster/landforms.tif", package = "motif"))
plot(landform)
landform_lsp = lsp_add_sf(landform, window = 100)
plot(landform_lsp)

lc_cove = lsp_signature(landform, type = "cove", window = 200, normalization = "pdf")
lc_cove_lsp = lsp_add_sf(lc_cove)

8 lsp_add_stars

plot(lc_cove_lsp["id"])
plot(lc_cove_lsp["na_prop"])

larger data example
library(stars)
landform = read_stars(system.file("raster/landform.tif", package = "motif"))
plot(landform)
landform_lsp = lsp_add_sf(landform, window = 100)
plot(landform_lsp)

lc_cove = lsp_signature(landform, type = "cove", window = 200, normalization = "pdf")
lc_cove_lsp = lsp_add_sf(lc_cove)
plot(lc_cove_lsp["id"])
plot(lc_cove_lsp["na_prop"])

lsp_add_stars Creates or adds a stars object

Description

Creates or adds a stars object based on the input object or a set of parameters. It accepts either an
object of class stars or lsp. In the first case, the output is created based on the window parameter.
In the second case, the output converts the lsp object into a stars object.

Usage

lsp_add_stars(x = NULL, window = NULL, metadata = TRUE)

Default S3 method:
lsp_add_stars(x = NULL, window = NULL, metadata = TRUE)

S3 method for class 'lsp'
lsp_add_stars(x = NULL, window = NULL, metadata = TRUE)

Arguments

x Object of class stars or lsp. For stars, window or window_size can be used.

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object. If window=NULL calculations are performed for a whole area. If the
window argument is numeric, it is a length of the side of a square-shaped block of
cells. Expressed in the numbers of cells, it defines the extent of a local pattern. If
an sf object is provided, each feature (row) defines the extent of a local pattern.
The sf object should have one attribute (otherwise, the first attribute is used as
an id).

metadata Logical. Only when x`` is of class lsp. If TRUE, the output object will have metadata ("id" and "na_prop"). If FALSE‘,
the output object will not have metadata ("id" and "na_prop").

lsp_add_terra 9

Value

A stars object converted from the input object or a provided set of parameters

Examples

library(stars)
landform = read_stars(system.file("raster/landforms.tif", package = "motif"))
plot(landform)
landform_lsp = lsp_add_stars(landform, window = 100)
plot(landform_lsp)

lc_cove = lsp_signature(landform, type = "cove", window = 200, normalization = "pdf")
lc_cove_lsp = lsp_add_stars(lc_cove)
plot(lc_cove_lsp)
plot(lc_cove_lsp["na_prop"])

larger data example
library(stars)
landform = read_stars(system.file("raster/landform.tif", package = "motif"))
plot(landform)
landform_lsp = lsp_add_stars(landform, window = 100)
plot(landform_lsp)

lc_cove = lsp_signature(landform, type = "cove", window = 200, normalization = "pdf")
lc_cove_lsp = lsp_add_stars(lc_cove)
plot(lc_cove_lsp)
plot(lc_cove_lsp["na_prop"])

lsp_add_terra Creates or adds a terra object

Description

Creates or adds a terra object based on the input object or a set of parameters. It accepts either an
object of class stars or lsp. In the first case, the output is created based on the window parameter.
In the second case, the output converts the lsp object into a terra object.

Usage

lsp_add_terra(x = NULL, window = NULL, metadata = TRUE)

Arguments

x Object of class stars or lsp. For stars, window or window_size can be used.

10 lsp_compare

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object. If window=NULL calculations are performed for a whole area. If the
window argument is numeric, it is a length of the side of a square-shaped block of
cells. Expressed in the numbers of cells, it defines the extent of a local pattern. If
an sf object is provided, each feature (row) defines the extent of a local pattern.
The sf object should have one attribute (otherwise, the first attribute is used as
an id).

metadata Logical. Only when x`` is of class lsp. If TRUE, the output object will have metadata ("id" and "na_prop"). If FALSE‘,
the output object will not have metadata ("id" and "na_prop").

Value

A terra object converted from the input object or a provided set of parameters

Examples

library(stars)
library(terra)
landform = read_stars(system.file("raster/landforms.tif", package = "motif"))
#plot(landform)
landform_lsp = lsp_add_terra(landform, window = 100)
#plot(landform_lsp)

#lc_cove = lsp_signature(landform, type = "cove", window = 200, normalization = "pdf")
#lc_cove_lsp = lsp_add_terra(lc_cove)
#plot(lc_cove_lsp)
#plot(lc_cove_lsp["na_prop"])

lsp_compare Comparison between spatial patterns

Description

Compares two spatial datasets containing categorical raster data. It accepts a categorical raster
dataset with one or more attributes, and compares it to the second dataset with the same attributes
and dimensions. The both dataset are either compared to as whole areas, areas divided into reg-
ular windows, or areas divided into irregular windows. This function allows for several types of
comparisons using different representations of spatial patterns, including "coma" (co-occurrence
matrix), "cove" (co-occurrence vector), "cocoma" (co-located co-occurrence matrix), "cocove" (co-
located co-occurrence vector), "wecoma" (weighted co-occurrence matrix), "wecove" (weighted co-
occurrence vector), "incoma" (integrated co-occurrence matrix), "incove" (integrated co-occurrence
vector). These representations are created for both datasets, and next a distance between them is
calculated using a selected measure from the philentropy::distance function. Additional pa-
rameters, such as neighbourhood or normalization types, are also available.

lsp_compare 11

Usage

lsp_compare(
x,
y,
type,
dist_fun,
window = NULL,
output = "stars",
neighbourhood = 4,
threshold = 0.5,
ordered = FALSE,
repeated = FALSE,
normalization = "pdf",
wecoma_fun = "mean",
wecoma_na_action = "replace",
...

)

Arguments

x Object of class stars, stars_proxy, or terra’s SpatRaster. It should have one
attribute (for "coma", "cove"), two attributes ("cocoma", "cocove", "wecoma",
"wecove"), two or more attributes ("incoma", "incove"), or any number of
attributes suitable for user-defined functions.

y Object of class stars, stars_proxy, or terra’s SpatRaster. It should have one
attribute (for "coma", "cove"), two attributes ("cocoma", "cocove", "wecoma",
"wecove"), two or more attributes ("incoma", "incove"), or any number of
attributes suitable for user-defined functions.

type Type of the calculated signature. It can be "coma" (co-occurrence matrix),
"cove" (co-occurrence vector), "cocoma" (co-located co-occurrence matrix),
"cocove" (co-located co-occurrence vector), "wecoma" (weighted co-occurrence
matrix), "wecove" (weighted co-occurrence vector), "incoma" (integrated co-
occurrence matrix), "incove" (integrated co-occurrence vector), "composition"
or any function that can summarize stars objects.

dist_fun Distance measure used. This function uses the philentropy::distance func-
tion in the background. Run philentropy::getDistMethods() to find possi-
ble distance measures.

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object. If window=NULL calculations are performed for a whole area. If the
window argument is numeric, it is a length of the side of a square-shaped block of
cells. Expressed in the numbers of cells, it defines the extent of a local pattern. If
an sf object is provided, each feature (row) defines the extent of a local pattern.
The sf object should have one attribute (otherwise, the first attribute is used as
an id).

output The class of the output. Either "stars", "sf", or "terra"

neighbourhood The number of directions in which cell adjacencies are considered as neigh-
bours: 4 (rook’s case) or 8 (queen’s case). The default is 4.

12 lsp_compare

threshold The share of NA cells to allow metrics calculation.

ordered For "cove", "cocove", "wecove" and "incove" only. The type of pairs consid-
ered. Either "ordered" (TRUE) or "unordered" (FALSE). The default is FALSE.

repeated For "incove" only. Should the repeated co-located co-occurrence matrices be
used? Either "ordered" (TRUE) or "unordered" (FALSE). The default is FALSE.

normalization For "cove", "cocove", "wecove", "incove", "composition", or user-provided
functions only. Should the output vector be normalized? Either "none" or "pdf".
The "pdf" option normalizes a vector to sum to one. The default is "pdf".

wecoma_fun For "wecoma" and "wecove" only. Function to calculate values from adjacent
cells to contribute to exposure matrix, "mean" - calculate average values of local
population densities from adjacent cells, "geometric_mean" - calculate geo-
metric mean values of local population densities from adjacent cells, or "focal"
assign a value from the focal cell

wecoma_na_action

For "wecoma" and "wecove" only. Decides on how to behave in the presence
of missing values in w. Possible options are "replace", "omit", "keep". The
default, "replace", replaces missing values with 0, "omit" does not use cells
with missing values, and "keep" keeps missing values.

... Additional arguments for the philentropy::distance function.

Value

Object of class stars (or sf or terra’s SpatRaster, depending on the output argument). It has
four attributes: (1) id - an id of each window. For irregular windows, it is the values provided in
the window argument, (2) na_prop_x - share (0-1) of NA cells for each window in the x object, (3)
na_prop_y - share (0-1) of NA cells for each window in the y object, (4) dist- calculated distance
between signatures for each window

Examples

library(stars)

lc15 = read_stars(system.file("raster/landcover2015s.tif", package = "motif"))
lc01 = read_stars(system.file("raster/landcover2001s.tif", package = "motif"))
ecoregions = read_sf(system.file("vector/ecoregionss.gpkg", package = "motif"))

ecoregions = st_transform(ecoregions, st_crs(lc15))

c1 = lsp_compare(lc01, lc15, type = "cove",
dist_fun = "jensen-shannon", window = ecoregions["id"])

plot(c1["dist"])

larger data example
library(stars)

lc15 = read_stars(system.file("raster/landcover2015.tif", package = "motif"))
lc01 = read_stars(system.file("raster/landcover2001.tif", package = "motif"))
ecoregions = read_sf(system.file("vector/ecoregions.gpkg", package = "motif"))

lsp_extract 13

ecoregions = st_transform(ecoregions, st_crs(lc15))

c1 = lsp_compare(lc01, lc15, type = "cove",
dist_fun = "jensen-shannon", window = ecoregions["id"])

plot(c1["dist"])

lsp_extract Extracts a local landscape

Description

Extracts a local landscape from categorical raster data based on its id and provided window argu-
ment.

Usage

lsp_extract(x, window, id)

Arguments

x Object of class stars, stars_proxy, or terra’s SpatRaster.

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object.

id Id of the local landscape - it is possible to find in the output of lsp_signature(),
lsp_search(), lsp_compare(), or lsp_add_clusters().

Value

A starsor terra object cropped to the extent of a selected local landscape

Examples

library(stars)
landform = read_stars(system.file("raster/landforms.tif", package = "motif"))
ecoregions = read_sf(system.file("vector/ecoregionss.gpkg", package = "motif"))

extract1 = lsp_extract(x = landform, window = 100, id = 25)
plot(extract1)

ecoregions = st_transform(ecoregions, st_crs(landform))
extract2 = lsp_extract(x = landform, window = ecoregions["id"], id = 11)
plot(extract2)

larger data example
library(stars)
landform = read_stars(system.file("raster/landform.tif", package = "motif"))

14 lsp_mosaic

ecoregions = read_sf(system.file("vector/ecoregions.gpkg", package = "motif"))

extract1 = lsp_extract(x = landform, window = 100, id = 1895)
plot(extract1)

ecoregions = st_transform(ecoregions, st_crs(landform))
extract2 = lsp_extract(x = landform, window = ecoregions["id"], id = 7)
plot(extract2)

lsp_mosaic Creates a raster mosaic

Description

Creates a raster mosaic by rearranging spatial data for example regions. See examples.

Usage

lsp_mosaic(x, output = "stars")

Arguments

x Usually the output of the lsp_add_examples() function

output The class of the output. Either "stars" or terra

Value

A stars or terra object

Examples

larger data example
library(stars)
library(sf)
landform = read_stars(system.file("raster/landform.tif", package = "motif"))
landform_cove = lsp_signature(landform,

type = "cove",
window = 200,
normalization = "pdf")

landform_dist = lsp_to_dist(landform_cove,
dist_fun = "jensen-shannon")

landform_hclust = hclust(landform_dist, method = "ward.D2")
plot(landform_hclust)

clusters = cutree(landform_hclust, k = 6)

lsp_restructure 15

landform_grid_sf = lsp_add_clusters(landform_cove, clusters)
plot(landform_grid_sf["clust"])

landform_grid_sf_sel = landform_grid_sf %>%
dplyr::filter(na_prop == 0) %>%
dplyr::group_by(clust) %>%
dplyr::slice_sample(n = 16, replace = TRUE)

landform_grid_sf_sel = lsp_add_examples(x = landform_grid_sf_sel, y = landform)
landform_grid_sf_sel

landform_clust_m = lsp_mosaic(landform_grid_sf_sel)

plot(landform_clust_m)

lsp_restructure Changes structure of the lsp object

Description

Converts a list-column with signatures into many numeric columns

Usage

lsp_restructure(x)

Arguments

x • an lsp object

Value

Object of class lsp. It has several columns: (1) id - an id of each window. For irregular windows,
it is the values provided in the window argument, (2) na_prop - share (0-1) of NA cells for each
window, (3) one or more columns representing values of the signature

Examples

library(stars)

landcover = read_stars(system.file("raster/landcover2015s.tif", package = "motif"))

landcover_cove = lsp_signature(landcover, type = "cove", threshold = 0.9, window = 100)
landcover_cover = lsp_restructure(landcover_cove)
landcover_cover

lsp_add_sf(landcover_cover)

16 lsp_search

lsp_search Search for similar spatial pattern

Description

Searches for areas with similar spatial patterns in categorical data. It accepts a categorical raster
dataset with one or more attributes, and compares it to the second (usually larger) dataset with the
same attributes. The first dataset is either compared to a whole area, areas divided into regular win-
dows, or areas divided into irregular windows from the second dataset. This function allows for sev-
eral types of comparisons using different representations of spatial patterns, including "coma" (co-
occurrence matrix), "cove" (co-occurrence vector), "cocoma" (co-located co-occurrence matrix),
"cocove" (co-located co-occurrence vector), "wecoma" (weighted co-occurrence matrix), "wecove"
(weighted co-occurrence vector), "incoma" (integrated co-occurrence matrix), "incove" (integrated
co-occurrence vector). These representations are created for both datasets, and next a distance be-
tween them is calculated using a selected measure from the philentropy::distance function.
Additional parameters, such as neighbourhood or normalization types, are also available.

Usage

lsp_search(
x,
y,
type,
dist_fun,
window = NULL,
output = "stars",
neighbourhood = 4,
threshold = 0.5,
ordered = FALSE,
repeated = FALSE,
normalization = "pdf",
wecoma_fun = "mean",
wecoma_na_action = "replace",
classes = NULL,
...

)

Arguments

x Object of class stars, stars_proxy, or terra’s SpatRaster. It should have one
attribute (for "coma", "cove"), two attributes ("cocoma", "cocove", "wecoma",
"wecove"), two or more attributes ("incoma", "incove"), or any number of
attributes suitable for user-defined functions.

y Object of class stars, stars_proxy, or terra’s SpatRaster. It should have one
attribute (for "coma", "cove"), two attributes ("cocoma", "cocove", "wecoma",
"wecove"), two or more attributes ("incoma", "incove"), or any number of
attributes suitable for user-defined functions.

lsp_search 17

type Type of the calculated signature. It can be "coma" (co-occurrence matrix),
"cove" (co-occurrence vector), "cocoma" (co-located co-occurrence matrix),
"cocove" (co-located co-occurrence vector), "wecoma" (weighted co-occurrence
matrix), "wecove" (weighted co-occurrence vector), "incoma" (integrated co-
occurrence matrix), "incove" (integrated co-occurrence vector), "composition"
or any function that can summarize stars objects.

dist_fun Distance measure used. This function uses the philentropy::distance func-
tion in the background. Run philentropy::getDistMethods() to find possi-
ble distance measures.

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object. If window=NULL calculations are performed for a whole area. If the
window argument is numeric, it is a length of the side of a square-shaped block of
cells. Expressed in the numbers of cells, it defines the extent of a local pattern. If
an sf object is provided, each feature (row) defines the extent of a local pattern.
The sf object should have one attribute (otherwise, the first attribute is used as
an id).

output The class of the output. Either "stars", "sf", or "terra"

neighbourhood The number of directions in which cell adjacencies are considered as neigh-
bours: 4 (rook’s case) or 8 (queen’s case). The default is 4.

threshold The share of NA cells to allow metrics calculation.

ordered For "cove", "cocove", "wecove" and "incove" only. The type of pairs consid-
ered. Either "ordered" (TRUE) or "unordered" (FALSE). The default is FALSE.

repeated For "incove" only. Should the repeated co-located co-occurrence matrices be
used? Either "ordered" (TRUE) or "unordered" (FALSE). The default is FALSE.

normalization For "cove", "cocove", "wecove", "incove", "composition", or user-provided
functions only. Should the output vector be normalized? Either "none" or "pdf".
The "pdf" option normalizes a vector to sum to one. The default is "pdf".

wecoma_fun For "wecoma" and "wecove" only. Function to calculate values from adjacent
cells to contribute to exposure matrix, "mean" - calculate average values of local
population densities from adjacent cells, "geometric_mean" - calculate geo-
metric mean values of local population densities from adjacent cells, or "focal"
assign a value from the focal cell

wecoma_na_action

For "wecoma" and "wecove" only. Decides on how to behave in the presence
of missing values in w. Possible options are "replace", "omit", "keep". The
default, "replace", replaces missing values with 0, "omit" does not use cells
with missing values, and "keep" keeps missing values.

classes Which classes (categories) should be analyzed? This parameter expects a list of
the same length as the number of attributes in x, where each element of the list
contains integer vector. The default is NULL, which means that the classes are
calculated directly from the input data and all of them are used in the calcula-
tions.

... Additional arguments for the philentropy::distance function.

18 lsp_search

Value

Object of class stars (or sf or terra’s SpatRaster, depending on the output argument). It has
three attributes: (1) id - an id of each window. For irregular windows, it is the values provided in
the window argument, (2) na_prop - share (0-1) of NA cells for each window in the y object, (3)
dist- calculated distance between the x object and each window in the y object

Examples

library(stars)

landcover = read_stars(system.file("raster/landcover2015s.tif", package = "motif"))
plot(landcover)

ext = st_bbox(c(xmin = -249797.344531127, xmax = -211162.693944285,
ymin = -597280.143035389, ymax = -558645.492448547),
crs = st_crs(landcover))

landcover_ext = landcover[ext]
plot(landcover_ext)

ecoregions = read_sf(system.file("vector/ecoregionss.gpkg", package = "motif"))
plot(ecoregions["id"])

s1 = lsp_search(landcover_ext, landcover, type = "cove",
dist_fun = "jensen-shannon", threshold = 0.9, window = 100)

plot(s1["dist"])

ecoregions = st_transform(ecoregions, st_crs(landcover))
s2 = lsp_search(landcover_ext, landcover, type = "cove",

dist_fun = "jensen-shannon", threshold = 0.5, window = ecoregions["id"])
plot(s2["dist"])

larger data example
library(stars)

landcover = read_stars(system.file("raster/landcover2015.tif", package = "motif"))
plot(landcover)

ext = st_bbox(c(xmin = -249797.344531127, xmax = -211162.693944285,
ymin = -597280.143035389, ymax = -558645.492448547),
crs = st_crs(landcover))

landcover_ext = landcover[ext]
plot(landcover_ext)

ecoregions = read_sf(system.file("vector/ecoregions.gpkg", package = "motif"))
plot(ecoregions["id"])

s1 = lsp_search(landcover_ext, landcover, type = "cove",
dist_fun = "jensen-shannon", threshold = 0.9, window = 1000)

plot(s1["dist"])

lsp_signature 19

ecoregions = st_transform(ecoregions, st_crs(landcover))
s2 = lsp_search(landcover_ext, landcover, type = "cove",

dist_fun = "jensen-shannon", threshold = 0.5, window = ecoregions["id"])
plot(s2["dist"])

lsp_signature Creates a spatial signature

Description

Calculates selected spatial signatures based on categorical raster data. It also allows for calculations
for any defined regular and irregular areas. It has several built-in signatures but also allows for any
user-defined functions.

Usage

lsp_signature(
x,
type,
window = NULL,
neighbourhood = 4,
threshold = 0.9,
ordered = FALSE,
repeated = FALSE,
normalization = "pdf",
wecoma_fun = "mean",
wecoma_na_action = "replace",
classes = NULL

)

Arguments

x Object of class stars, stars_proxy, or terra’s SpatRaster. It should have one
attribute (for "coma", "cove"), two attributes ("cocoma", "cocove", "wecoma",
"wecove"), two or more attributes ("incoma", "incove"), or any number of
attributes suitable for user-defined functions.

type Type of the calculated signature. It can be "coma" (co-occurrence matrix),
"cove" (co-occurrence vector), "cocoma" (co-located co-occurrence matrix),
"cocove" (co-located co-occurrence vector), "wecoma" (weighted co-occurrence
matrix), "wecove" (weighted co-occurrence vector), "incoma" (integrated co-
occurrence matrix), "incove" (integrated co-occurrence vector), "composition"
or any function that can summarize stars objects.

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object. If window=NULL calculations are performed for a whole area. If the
window argument is numeric, it is a length of the side of a square-shaped block of

20 lsp_signature

cells. Expressed in the numbers of cells, it defines the extent of a local pattern. If
an sf object is provided, each feature (row) defines the extent of a local pattern.
The sf object should have one attribute (otherwise, the first attribute is used as
an id).

neighbourhood The number of directions in which cell adjacencies are considered as neigh-
bours: 4 (rook’s case) or 8 (queen’s case). The default is 4.

threshold The share of NA cells (0-1) to allow metrics calculation.

ordered For "cove", "cocove", "wecove" and "incove" only. The type of pairs consid-
ered. Either "ordered" (TRUE) or "unordered" (FALSE). The default is FALSE.

repeated For "incove" only. Should the repeated co-located co-occurrence matrices be
used? Either "ordered" (TRUE) or "unordered" (FALSE). The default is FALSE.

normalization For "cove", "cocove", "wecove", "incove", "composition", or user-provided
functions only. Should the output vector be normalized? Either "none" or "pdf".
The "pdf" option normalizes a vector to sum to one. The default is "pdf".

wecoma_fun For "wecoma" and "wecove" only. Function to calculate values from adjacent
cells to contribute to exposure matrix, "mean" - calculate average values of local
population densities from adjacent cells, "geometric_mean" - calculate geo-
metric mean values of local population densities from adjacent cells, or "focal"
assign a value from the focal cell

wecoma_na_action

For "wecoma" and "wecove" only. Decides on how to behave in the presence
of missing values in w. Possible options are "replace", "omit", "keep". The
default, "replace", replaces missing values with 0, "omit" does not use cells
with missing values, and "keep" keeps missing values.

classes Which classes (categories) should be analyzed? This parameter expects a list of
the same length as the number of attributes in x, where each element of the list
contains integer vector. The default is NULL, which means that the classes are
calculated directly from the input data and all of them are used in the calcula-
tions.

Value

Object of class lsp. It has three columns: (1) id - an id of each window. For irregular windows, it is
the values provided in the window argument, (2) na_prop - share (0-1) of NA cells for each window,
(3) signature - a list-column containing calculated signatures

Examples

library(stars)

landcover = read_stars(system.file("raster/landcover2015s.tif", package = "motif"))

landcover_coma = lsp_signature(landcover, type = "coma", threshold = 0.9, window = 2000)
landcover_coma

landcover_comp = lsp_signature(landcover, type = "composition", threshold = 0.9)
landcover_comp

lsp_to_dist 21

larger data example
library(stars)

landcover = read_stars(system.file("raster/landcover2015.tif", package = "motif"))

landcover_coma = lsp_signature(landcover, type = "coma", threshold = 0.9, window = 2000)
landcover_coma

landcover_comp = lsp_signature(landcover, type = "composition", threshold = 0.9)
landcover_comp

lsp_to_dist Calculate Distance Matrix

Description

Calculates a distance matrix based on an object of class lsp.

Usage

lsp_to_dist(x, dist_fun, unit = "log2", p = NULL)

Arguments

x An object of class lsp - usually the output of the lsp_signature() function

dist_fun A distance/dissimilarity method used. All possible values can be found using
the philentropy::getDistMethods() function

unit A character string specifying the logarithm unit that should be used to compute
distances that depend on log computations: "log", "log2", "log10". The
default is "log"

p Power of the Minkowski distance. Used only when the dist_fun = "minkowski"

Value

An object of class ‘"dist"“

Examples

library(stars)
landcover = read_stars(system.file("raster/landcover2015s.tif", package = "motif"))

landcover_cove = lsp_signature(landcover, type = "cove", threshold = 0.9, window = 400)
landcover_cove

dist_cov = lsp_to_dist(landcover_cove, dist_fun = "jensen-shannon")

22 lsp_transform

dist_cov

larger data example
library(stars)
landcover = read_stars(system.file("raster/landcover2015.tif", package = "motif"))

landcover_cove = lsp_signature(landcover, type = "cove", threshold = 0.9, window = 2000)
landcover_cove

dist_cov = lsp_to_dist(landcover_cove, dist_fun = "jensen-shannon")
dist_cov

lsp_transform Transforms lsp objects

Description

It allows for transforming spatial signatures (outputs of the lsp_signature() function) using user-
provided functions. See examples for more details.

Usage

lsp_transform(x, fun, ...)

Arguments

x Object of class lsp - usually the output of the lsp_signature() function.

fun A user-provided function.

... Additional arguments for fun.

Value

Object of class lsp. It has three columns: (1) id - an id of each window. For irregular windows, it is
the values provided in the window argument, (2) na_prop - share (0-1) of NA cells for each window,
(3) signature - a list-column containing with calculated signatures

Examples

library(stars)
landform = read_stars(system.file("raster/landforms.tif", package = "motif"))
result_coma500 = lsp_signature(landform, type = "coma", threshold = 0.5, window = 500)

#see how the first signature looks
result_coma500$signature[[1]]

my_function = function(mat){
mat_c = colSums(mat)

prepare_window 23

freqs = mat_c / sum(mat)
entropy
-sum(freqs * log2(freqs), na.rm = TRUE)

}

result_coma500_2 = lsp_transform(result_coma500, my_function)

#see how the first signature looks after transformation
result_coma500_2$signature[[1]]

larger data example
library(stars)
landform = read_stars(system.file("raster/landform.tif", package = "motif"))
result_coma500 = lsp_signature(landform, type = "coma", threshold = 0.5, window = 500)

#see how the first signature looks
result_coma500$signature[[1]]

my_function = function(mat){
mat_c = colSums(mat)
freqs = mat_c / sum(mat)
entropy
-sum(freqs * log2(freqs), na.rm = TRUE)

}

result_coma500_2 = lsp_transform(result_coma500, my_function)

#see how the first signature looks after transformation
result_coma500_2$signature[[1]]

prepare_window Prepares window* arguments (internal function)

Description

Prepares window* arguments (internal function)

Usage

prepare_window(x, window)

Arguments

x Object of class stars or stars_proxy

window Specifies areas for analysis. It can be either: NULL, a numeric value, or an sf
object. If window=NULL calculations are performed for a whole area. If the
window argument is numeric, it is a length of the side of a square-shaped block of

24 prepare_window

cells. Expressed in the numbers of cells, it defines the extent of a local pattern. If
an sf object is provided, each feature (row) defines the extent of a local pattern.
The sf object should have one attribute (otherwise, the first attribute is used as
an id).

Value

A list with window, window_size, and window_shift

Index

determine_classes, 2

lsp_add_clusters, 3
lsp_add_examples, 4
lsp_add_quality, 5
lsp_add_sf, 7
lsp_add_stars, 8
lsp_add_terra, 9
lsp_compare, 10
lsp_extract, 13
lsp_mosaic, 14
lsp_restructure, 15
lsp_search, 16
lsp_signature, 19
lsp_to_dist, 21
lsp_transform, 22

philentropy::getDistMethods(), 21
prepare_window, 23

25

	determine_classes
	lsp_add_clusters
	lsp_add_examples
	lsp_add_quality
	lsp_add_sf
	lsp_add_stars
	lsp_add_terra
	lsp_compare
	lsp_extract
	lsp_mosaic
	lsp_restructure
	lsp_search
	lsp_signature
	lsp_to_dist
	lsp_transform
	prepare_window
	Index

